Low Velocity Impact on Relatively Thick Rectangular Plate under In-plane Loads Resting on Pasternak Elastic Foundation

Authors

  • R. Kalhor , Impact Research Laboratory, School of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran
  • Sh. Hosseini Hashemi , Impact Research Laboratory, School of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran
Abstract:

This study deals with the elastic-plastic impact on moderately thick rectangular plate subjected to uniform in-plane compressive loads resting on the Pasternak elastic foundation. The proposed rectangular plates have two opposite edges simply-supported, while all possible combinations of free, simply-supported and clamped boundary conditions are applied to the other two edges. The dimensionless equations of motion of the plate are obtained by applying the Reissner-Mindlin plate theory considering the first-order shear deformation and the rotary inertia effects. The exact closed form solution of the governing equations leading to more accurate result with less calculating time in comparison with the Rayleigh-Ritz method is used to obtain the dynamic response of the plat. The validity of the result is first examined by studying the convergence of the maximum impact force. Then, a comparison of results with those available in literature confirms the excellent accuracy of the present approach. Finally the effects of the dimensionless parameters such as uniaxial and biaxial in-plane loads and the effect of foundation stiffness parameters on force and displacement histories have been examined.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Damped Vibrations of Parabolic Tapered Non-homogeneous Infinite Rectangular Plate Resting on Elastic Foundation (RESEARCH NOTE)

 In the present paper damped vibrations of non-homogeneous infinite rectangular plate of parabolically varying thickness resting on elastic foundation has been studied. Following Lévy approach, the equation of motion of plate of varying thickness in one direction is solved by quintic spline method. The effect of damping, elastic foundation and taperness is discussed with permissible range of pa...

full text

Thermo-Elastic Analysis of Non-Uniform Functionally Graded Circular Plate Resting on a Gradient Elastic Foundation

Present paper is devoted to stress and deformation analyses of heated variable thickness functionally graded (FG) circular plate with clamped supported, embedded on a gradient elastic foundation and subjected to non-uniform transverse load. The plate is coupled by an elastic medium which is simulated as a Winkler- Pasternak foundation with gradient coefficients in the radial and circumferential...

full text

Mesh-free Dynamic Analyses of FGM Sandwich Plates Resting on A Pasternak Elastic Foundation

This study analyzes the free vibration, forced vibration, resonance, and stress wave propagation of orthotropic sandwich plates made of functionally graded materials (FGMs). Dynamic analyses are conducted using a mesh-free method based on first-order shear deformation theory and the shape functions constructed using moving least squares approximation. The sandwich plates are rested on a Pastern...

full text

Free vibration analysis of magnetoelectroelastic plate resting on a Pasternak foundation

Free vibration of a magnetoelectroelastic plate resting on a Pasternak foundation is investigated based on Mindlin theory. The in-plane electric and magnetic fields can be ignored for plates. According to the Maxwell equation and magnetoelectric boundary condition, the variation of electric and magnetic potentials along the thickness direction of the plate is determined. Using Hamilton’s princi...

full text

A Numerical Study on Aluminum Plate Response under Low Velocity Impact

In the present paper, a numerical study is performed to investigate the response of different plates aluminum alloys subjected to low velocity impact condition. In this regard, the square AA5083-H116 aluminum plates with dimensions 300×300 and 3 mm and 5 mm thick under low velocity impact are modelled, and a mesh convergence study is carried out to decide the appropriate number of elements. In ...

full text

thermo-elastic analysis of non-uniform functionally graded circular plate resting on a gradient elastic foundation

present paper is devoted to stress and deformation analyses of heated variable thickness functionally graded (fg) circular plate with clamped supported, embedded on a gradient elastic foundation and subjected to non-uniform transverse load. the plate is coupled by an elastic medium which is simulated as a winkler- pasternak foundation with gradient coefficients in the radial and circumferential...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 12  issue 1

pages  41- 67

publication date 2011-03-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023